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Abstract 
This paper proposed the frequency domain Radial Basis Function 

(RBF) method for transient eddy problems. It combines the RBF 

collocation and the Fourier transforms technique. And the RBF 

method is utilized to solve the frequency model so as to obtain 

the approximate solution in the frequency domain. While the 

Fourier transform realizes the time and frequency transformation. 

On the basis of proper time-frequency parameter settings and the 

mono-frequency harmonic field solution by the RBF method, the 

frequency domain solutions are obtained and then transformed 

into time domain solutions. The numerical simulation of the 

transient magnetic field in the aluminum flake board showed that 

the method is feasible and effective. In addition, the method can 

maintain good precision under large time and space interval 

because of the RBF’s good approach's ability. 

Keywords: Radial basis function, Transient eddy current,   
Meshless, Frequency domain. 

1. Introduction 

The transient eddy current field computation is of great 

importance for product design and performance analysis. 

Recently, meshless methods like EFGM (Element Free 

Galerkin Method), RBF method and RKPM (Reproducing 

Kernel Particle Method) are gradually applied in the 

transient eddy current field. S.A.Viana[1] employed the 

local radial point interpolation method. K.R.Shao 

introduced the radial function into boundary element[2~3]. 

Zhang.Y[4] utilizes multi-quadrics collocation method in 

time domain. Compared to EFGM, the RBF method takes 

great advantages of approximate function, calculation 

model and boundary processing. However, time domain 

method relies greatly on step size. Because the frequency 

is an important parameter, especially for system frequency 

response analysis, we proposed frequency domain RBF 

method. 

Firstly, the transient eddy current model and RBF 

collocation approximation theory were given in section II. 

Then in section III, the principles of frequency RBF  

 

method was put forward. And finally, the frequency RBF 

simulation of thin aluminum plate transient magnetic field 

was presented in section IV. 

2. Transient eddy current model and RBF    
collocation approximation theory 

2.1 Transient Eddy Current Model 

In transient eddy problems, the quasi-static magnetic field 

model is built. Generally, the initial boundary value form 

is: 
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where u is the magnetic field intensity or a component of 

magnetic vector potential. Ω is the solution domain, 

uΓ and qΓ  are respectively the first and second-type 

boundary conditions; T is the time interval. 

2.2 RBF Approximation Theory 

The RBF is the continuous real valued function of radial 

vector. The adopted RBF in this paper is multi-quadric 

(Abbreviated as. MQ) function, its expression in three-

dimension is: 

2 2 2 2( ) ( ) ( ) ( )
x y z

x c y c z cφ α= − + − + − +x     (2) 

Where (cx,cy,cz) is the center of the basis function; α=β||ci - 

cj|| is shape parameter. Considering an unknown function 

f(x) and its discrete data nodes, the RBF interpolation has 

the following form:[5] 
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When the basis function centers are chosen on the 

interpolation points, the interpolation matrix can be 

obtained as:  
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Thus the weight coefficients are available:   [ ]
1−

=λ Φ f                                                         (5) 

Where [λ]=[λ1,λ2,…,λN]T, [f(x1),f(x2),…,f(xN)]T. Therefore, 

the function f(x) at any point x is:      [ ]
1

( ) ( ) ( )f
−

= =x Φ x λ Φ x Φ f                           (6) 

3. RBF method in frequency domain 

In the time modal Eq.(1), function u(t,x) consists of time 

and space variables with first and second order partial 

derivatives. So in frequency domain, the above model will 

be transformed at first, then get the frequency domain 

solution, and finally we can acquire the time domain 

solution through inverse transformation. 

The corresponding frequency domain model is: 
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where U(ω,x) is the Fourier transform function of u(t,x). 

The implementation scheme of the frequency domain RBF 

method is as follows: 

 

3.1 Time and Frequency parameter settings 

In Fourier transformations, the truncating and 

discretization for all related functions as ( , )q t x , u(t,x), 

( , )u ω x  and ),( xωU  are necessary. According to signal 

theory, the time step should satisfy π ct ω∆ ≤  where cω  is 

maximum frequency. The frequency step should satisfy 

π Tω∆ ≤ 2  where T is the period. The discrete 

approximate functions are ( , )q n t∆ x , ( , )u n t∆ x , ( , )u k ω∆ x  

and ( , )U k ω∆ x . 

3.2 RBF parameter settings 

The RBF parameters include center parameter ci, shape 

parameter βi and collocation points. Assume the number of 

RBFs and collocation points are respectively N and 

M=M1+M2 (where M1 is the collocation points in domain 

while and M2 for the boundary). 

3.3 Frequency Solution Calculation 

(1) mono-frequency solution: Assume the frequency 

point is ω=ω0 (k=k0), solving the corresponding 

Helmholtz equations in phasor form[6-7]:  
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The matrix form is: 
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where L and B mean domain and boundary operator. Set 

approximate solution as ( )0( )

0( , ) ,
k

i i i i

i
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In Eq.(12), we have following equations: 
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 (2) Frequency sweeping process, with step ω∆  in the 

range [-ωc,ωc], to find every frequency point solution 
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coefficients ( )ik
λ&  similarly. 

(3) Combining the component frequency solutions into 

frequency domain solution, we obtain approximate 

solution  ( )( )( , ) ,i i i i

i

U ω λ φ α∆ = −∑ k
k x x c& . 

3.4 Time Domain Solution 

Time domain approximate solution u(t,x) can be calculated 

from the frequency solution. With the inverse Fourier 

transformation, we get the time domain solution as 
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4. Simulation of thin aluminum plate 

Considering long thin wire wrapped aluminum plate with 

thickness of d (In the positive x axis direction) in Fig.1. 

 
Fig. 1.  Model of long straight, thin aluminum plate 

The changing process of magnetic field was analyzed for 

rectangular impulse excitation. The model is: 
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The above parameter are d=1.0cm, T=20.0s, τ=2.0s, 

μ=4π×107(H/m),σ=3.82×107(S/m) and H0=1.0A/m. Setting 

the discrete step 0.05st∆ =  and rad/s π205.0 ×=∆ω . The RBF 

centers and collocation points are equally located in [-

0.5cm, 0.5cm] with step h=0. 05cm. Select shape 

parameter β=5. 0. The test point number is 101 with 

intervals of 0.01cm. The simulation results are listed in 

Fig.2 and Fig.3. 

 

 

Fig.2 Exact and RBF solutions 

 

 
Fig.3 RBF solutions at selected points for magnetic field intensity 

To compare errors, define relative RMSE (Root Mean 

Square error): 
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where uexact is the exact solution, ucalc is the approximate 

solution. The RMSE reflects the proportional relationship 

of error energy and total energy. In above simulation, the 

maximum error and the relative RMSE of magnetic field 

intensity RBF solution are respectively 0.5024A/m and 

5.0294%. Tested errors of part of the points selected are 

listed in table 1: 

TABLE 1:Magnetic intensity and its error data at selected points 

Point position (cm) Max_Hz Max_RBF RMSE_RBF 

0.45 0.8632 0.0403 1.4505% 

0.40 0.7307 0.0126 0.7911% 

0.35 0.6103 0.0086 1.0518% 

0.30 0.5038 0.0079 1.4766% 

0.25 0.4160 0.0081 1.9098% 

0.20 0.3499 0.0089 2.2877% 

0.15 0.3019 0.0100 2.5784% 

0.10 0.2942 0.0107 2.7746% 

0.05 0.2917 0.0113 2.8856% 

0.00 0.2916 0.0114 2.9211% 

Note: Max_Hz is the maximum magnetic field intensity; Max represents the 

maximum absolute error; RMSE is relative root mean square error. 

 

Besides, after changing truncation length, time interval and 

step length in simulation, the maximum absolute error and 

relative RMSE of Hz(t,x) is listed in table 2~3: 

TABLE 2:Effect of time interval 

Time interval (Δt/s)  Maximum error (A/m) relative RMSE 

0.50 0.5242 20.4480% 

0.25 0.5122 12.9752% 

0.10 0.5049 7.3466% 

0.025 0.5012 3.6523% 
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TABLE 3:Effect of step length 

Step length (h/cm) Maximum error (A/m) relative RMSE 

0.25 0.5024 15.7812% 

0.10 0.5024 6.4114% 

0.02 0.5024 4.3658% 

0.01 0.5024 4.5970% 

 

In the above adjustment of a certain parameter, other 

parameters than it maintain unchanged (The original 

simulation parameters were T=20.0s, Δt=0.05s and 

h=0.05cm). The discontinuity of pulse current along with 

RBF’s limited approximation ability for piecewise 

functions makes maximum absolute error insensitive with 

parameter changes. Yet relative RMSE in general reflects 

the details of the approximate solution. Data we obtained 

show that: the impact of the truncation length of the error 

of the most significant, followed by time-distance, and 

RBF is able to maintain good precision with relatively 

large step length. 

5. Conclusions 

This paper introduced a RBF method into transient eddy 

current field solution; adopted frequency domain 

processing method for time variables of time-varying field; 

formed frequency domain RBF method and applied it into 

thin aluminum plate magnetic field transient analysis. 

Numerical simulation shows that: frequency domain RBF 

method is capable and effective for transient eddy current 

field analysis; moreover, RBF has good approximation 

ability; thus, it could maintain acceptable precision with 

relatively larger time interval and step length.  
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